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Let H( Q) be the space of analytic functions on a complex region Q, which is not
the punctured plane. In this paper, we prove that if a sequence of automorphisms
{qJ,,} ,,~" of Q has the property that for every compact subset K c Q there is a
positive integer n such that K n qJ,,(K) = 0, then there exists an infinite dimensional
closed vector subspace FcH(Q) such that for alljEF\{O} the orbit {loll'"},,,,"
is dense in H(Q). The corresponding result for the punctured plane is somewhat
different and is also studied. If· J995 Academic Press. Inc.

1. INTRODUCTION AND TERMINOLOGY

Throughout this paper C will stand for the complex plane, Q a region
contained in C, D the open unit disk and COX) the extended complex plane
and C* = C \ {O} the punctured plane. H(Q) denotes, as usual, the space of
holomorphic functions on Q, endowed with the topology of uniform
convergence on compact subsets.

If K is a compact subset of C, we denote by A(K) the set of functions
which are holomorphic in the interior of K and continuous on K. We
denote by .~(Q) the set of all compact subsets K c Q whose complement
is connected and by f(Q) the set of all compact subsets whose comple
ment with respect to Q has no connected, relatively compact components;
in other words, the compact subsets which are Runge in Q. It is obvious
that ~(Q) c .:i'(Q). If See, then we call each connected component of
CY \5 a hole, including the connected component containing 00. Aut(Q)
denotes the set of automorphisms of Q and oXQ the boundary of Q as
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a subset of C J
'. By 12 we denote the Hilbert space of the sequences of

complex numbers for which the norm

is finite. Finally, we denote by L 2( T) the Hilbert space of the complex
functions on the torus T = {z E C : IzI = I} for which the norm

is finite. We shall make use of the isomorphism between these Hilbert
spaces.

In 1929 G. D. Birkhoff [2 J proved the following:

THEOREM. There exists an entire function f(z) such that to an arbitrary
entire function g(z) corre~ponds a sequence {a,,},,;;,o depending on g(z) and
sati~fying

lim f(z + a,,) = g(z)

uniformly on any compact set.

Such a function is called universal. Since then, other authors have
worked on this subject. In 1941 W. P. Seidel and J. L. Walsh [22J estab
lished an analogous theorem for the unit disk, replacing z + a" by (z - a,,)/
(z + iinl and letting g(z) be holomorphic on a subregion of the unit disk.

In 1976 Luh [18J stated that given a sequence {a,,},,;;,o with limit oc,
there exists an entire function f such that for every compact set K with con
nected complement in the complex plane and for every function g E A(K),
there exists a subsequence {a"J k;;, 0 such that

lim f(z + a"k) =g(z)
k---.-. x'

uniformly on K.
In 1989 Zappa [23 J replaced the additive group of complex numbers C

by the multiplicative group C* and pointed out a generalization for a non
compact general Riemann surface S. He remarked the following: assume
that the action of the group G of automorphisms of S is properly discon
tinuous, i.e., for every compact subset K of S there exists qJ E G such that
K n qJ(K) = 0; then under these conditions there exists a holomorphic
function f on S such that for every compact subset K, with a fundamental
system of simply connected neighborhoods, for every g holomorphic in the
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interior of K and continuous on its boundary, and for every [; > 0 there
exists rp E G such that

max Ifrp-gl ~[;.
K

In 1984 Duios-Ruis [8 J proved that in BirkhofT's theorem on transla
tions, the universal vectors can have "arbitrarily slow growth." This result
is refined further, and given an operator-theoretic twist, by Chan and
Shapiro in [6 J. Gethner and Shapiro furnished in [11] a single sufficient
condition that provides a unified proof of universality in several situations,
including theorems of BirkhofT, MacLane, Seidel and Walsh and many
others. This same point of view is further advanced in the papers of
Godefroy and Shapiro [12; Sections 4 and 5] and of Bourdon and Shapiro
[5]. From the definition of universality it is derived that universal vectors
form a residual set. See also [3J, [13], [14], [19], and [20] for addi
tional interesting results on universality, specially about derivative
operators.

If {rpn}n~ocAut(Q), then we may define their corresponding sequence
of composition operators Tn:H(Q}-..H(Q) (n~O) by TJI(j)=JrpJl'
Obviously, every T" is a continuous linear operator on H(Q). If fE H(Q),
thenfis said to be universal on H(Q) (respectively on A(K), where KcQ
is compact) if the orbit {T,,(j) = f rp,,},. ;> 0 is dense in H(Q) (A (K), respec
tively). It is clear that the above results can be expressed in these terms.

In [I] we introduced the following definition:

DEFINITION 1.1. Let {rpn},,;>O c Aut(Q). We say that {rp,,} ,,;>0 is run
away if for each compact subset K c Q there exists a positive integer
no=no(K) such that Knrp"JK)=0.

In other words, the action of {rp,,} ,,~o is properly discontinuous on Q.
The name run-away is introduced for the sake of brevity. It is an easy exer
cise to check that if t/J is an isomorphism from Q onto Ql, then {rp,,},.~o

is run-away on Q if and only if {t/J rp" t/J -I}" ~ 0 is run-away on Q I' It is
clear from the definition that if {K,,} JI;> 0 is an exhaustive sequence of com
pact subsets in Q, we only have to verify the condition on every K". In fact,
we shall always assume, by extracting a subsequence of {rp,.},,;> 0 if
necessary, that if {rpn},,~O is run-away on Q and an exhaustive sequence of
compact subsets {K,,},,~o is given, then K"nrp,,(K,,) = 0. If it is so, then
every subsequence of {rp,,} ,,;> 0 is also run-away.

In [1] we characterized the sequences {rp,,},,;>ocAut(Q) where Q is C,
o or C* which are run-away and we proved that if we have a run-away
sequence {rp,,},,~ocAut(Q), where Q is not isomorphic to C*, then the set
of universal functions on H(Q) is a residual set of H(Q) and, in addition,
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that the condition on {rp n} J1 ~ 0 of being run-away is necessary. In the case
that Q is isomorphic to C* we only have that the set of the functions which
are universal on A(K) for all K E X;(Q) is a residual subset of H(Q).

In a different setting it is well known that the set of nowhere diferentiable
functions is a residual set in the space of the continuous functions.
Recently, some authors have proved the existence of non-finite dimensional
spaces of nowhere diferentiable functions, except the null function, of
course (see [9], [15], and [21]). Since the set of universal functions is a
residual set too, we ask for the existence of non-finite dimensional closed
spaces of universal functions and give a positive answer. So, there are, not
only topologically but also algebraically, a large number of universal
functions. Our aim is to prove the following theorem:

THEOREM 1.2. Let Q c C be a region, v.'hich is not isomorphic to C*. Let
{rpn} n~O C Aut(Q) be a run-away sequence. Then there exists a non-finite
dimensional closed vector subspace FcH(Q) such that each fEF\{O} is
universal on H(Q).

This result complements a recent one of P. Bourdon [5], which states
that if an operator T on a Banach space X has a hypercyclic ( = universal)
vector, then there is a dense, invariant subspace of X that consists, except
for the zero vector, entirely of hypercyclic vectors. Special cases of Bourdon's
result were proved by Godefroy and Shapiro in [12].

If Q is a region of finite connectivity greater than 2, then Aut(Q) is a
finite set (see [16] for instance). So, there is not any sequence of
automorphisms which can be run-away. If C""\Q has two connected com
ponents, then Q may be isomorphic to the punctured unit disk, an annulus
or C* (see [17, pp.68-69] for instance). It is easy to check that in the
first and the second cases there is not any sequence of automorphisms
which can be run-away either. So, apart from C*, the only interest of
Definition 1.1 is in simply connected regions and regions with infinite
connectivity.

2. PROOF OF THE MAIN RESULT

Some topological lemmas will be needed to prove Theorem 1.2. Defini
tion 2.1, and Lemmas 2.2 and 2.3 can also be found in [I]. We repeat them
here for the sake of completeness.

DEFINITION 2.1. Let Q c C be a region with infinity connectivity. We
say that a connected component C of CYC\,Q is isolated if there exists an
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open set V c Coo such that C c V and V 1\ C' = 0 for the remaining
components C' of CX\Q.

At this point it is convenient to point out that if K E .f(Q), then CX\K
has finitely many connected components. Further, if C"c\K has I connected
components so has CX\qJ(K), where qJ is an automorphism of Q.

LEMMA 2.2. Let Q c C be a region of infinite connectivity and
{qJ,,},,;.ocAut(Q) a run-away sequence. Then there exists a non-isolated,
connected component C of CO'· \Q, and a run-away subsequence {qJ"k} k;. 0

such that for every compact set K c Q and for every open set V c C X with
Cc V, there exists a positive integer k o such that for every k "?-ko we have
qJ"k(K) c V.

Proof We may choose an exhaustive sequence {K,,},,;.o of connected
compact subsets in Q satisfying COC\K" = U}EJ

n
Vi, where the union is dis

joint, i" is a finite set and each Vi is an open subset of CX, in such a way
that either Vi contains a unique, isolated, connected component of coc\Q,
or it contains a non-isolated, connected component. At this last case, it
must contain infinitely many components of CX\Q. We may suppose that
CO"\K" has three or more components for each n. Since {qJ,,} ,,;.0 is
run-away we have that, by extracting a subsequence, if necessary,
K" 1\ qJ,,(K,,) = 0 for each n; hence, qJ,,(K,,) c C\K" and, from the connec
tion of qJ,,(K,,), there exists Jo E i" with qJ,,(K,,) c Vio where Vj~ contains a
non-isolated, connected component of CO'o\Q, say, C", Hence, by the com
pactness of CX, there exists a connected component C of C="C\Q and a sub
sequence {C"J k;. 0 with the following property: given an open set V ceO'
with Cc V, there is a positive integer ko such that C"kC V for all k?:ko.

Then it is readily seen that C is non-isolated and {qJ"k} k;.O satisfies the
required conditions. Indeed, C is "approximated" by {C"k} and, if K c Q is
compact and V c CO" is open with C c V, then K c K"k for k ?: k o. But the
sets V'lok (jo certain index in i"k) can be made small containing C"k' so
Vj~ C V for k large enough. Thus qJ"k(K) c qJ"k(K"k) c Vj:~ cU.I

In the sequel, if Q has infinite connectivity and {qJ,,},,;.ocAut(Q) is a
run-away sequence, we may assume that {qJ,,},,;. 0 satisfies the property of
the previous lemma by extracting a subsequence, if necessary.

LEMMA 2.3. Let Q c C be a region of infinite connectivity, {qJ ,,} ,,;, 0 c

Aut(Q) a run-away sequence and K" K E .f(Q). Then there exists a positive
integer no such that K, 1\ qJ"o(K) = 0 and K, U qJ"o(K) E .Jf'(Q).

Proof Without loss of generality we may assume that K 1 and K are connec
ted. Now, let I, and lbe the number of holes of K, and K, respectively. Consider
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the connected component C furnished by Lemma 2.2. Then V] = C""\K, is
an open neighborhood of C. Since C is non-isolated there is an open
neighborhood V and a connected component Co of C"'\Q such that
C eVe V] and Co c VI \ u. By Lemma 2.2, there exists a positive
integer no such that rpno(K) c U. Clearly, K] n rpno(K) = 0. Then, the number
of holes of K, u rpllo(K) is I] + 1- l. It may happen that K, lies on a
bounded connected component of C"\rpno(K), or rpno(K) lies on a bounded
connected component of C"'\K" or neither of both. In this last case there
is nothing to prove. In the first two cases, K] u rpnJK) has, at least,
I] + 1- 2 holes that contain a hole of Q. Let us suppose that rp"o(K) lies on
a bounded connected component of C""\K, (the case that K] lies on a
bounded component of C"c\rpllo(K) can be handled analogously). We have
to prove that there is a hole of Q in the non-bounded connected compo
nent ofC"'\rp"o(K) which lies on the same hole of K] that rp"o(K), since this
shows that the complement of K] u rpno(K) has no relatively compact con
nected components. But, by the above construction, Co lies on the non
bounded connected component of C"\rp"o(K) and, consequently, it lies on
the same hole of K, that rpno(K). I

In the remaining of this paper we may assume that the exhaustive
sequence {K,,} n ~o is in .ff(Q). By using the previous lemma, it is easy to
prove by induction the following lemma:

LEMMA 2.4. Let Q c C be a region of infinite connectivity, {rpll} Il~O c

Aut(Q) a run-{l\vay sequence and {K,,} n ~() an exhaustive sequence of com
pact subsets of Q. Then there exists a run-away subsequence {rpllk} k ~ 0 and
a subsequence of compact subsets {Knk }k ~ 0 such that, j(Jr all finite set I of
natural numbers with first element I and last element s, we have Knl u
(UiE/rp"k(Kllk )) is a di5joint union lvhich belongs to .f(Q) and is contained
in K nk ,\.+ I ~ I

The statement of the previous lemma is obvious if Q is simply connected.

Proof of Theorem 1.2. Without loss of generality we may suppose that
fi c Q. Let {em} m~O be a sequence of positive numbers such that
L;~~o em < l. Let {K Il } n~() be an exhaustive sequence of compact subsets of
Q such that fi c Ko. Actually, we consider that {K,,} n~ 0 and {rp Il} n~ 0

satisfy the same property as the subsequence obtained in Lemma 2.4. At
last, let {p Il( z) } ,,~() be a denumerable dense subset of H( Q).

Since the proof has two very different parts, it will be convenient to
divide it into two steps.

First step. By setting i(m, n) = (n + m)(n + m + 1)/2 + m, we divide
{rpn}n~o into infinitely many disjoint subsequences {rpilm.,,)},,~o (m~O),

for each of them we will construct a corresponding function f,n such that:
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(a) Each 1m is a universal function for {<p iim. III} II;;' 0, so is for
{<p,,} 11;;,0' In fact we have

(b) For ki=m the sequence U:,,(<Piik.III)},.;;'O converges uniformly to
zero on compact subsets. In fact, we have

I r Cm
max J",(<Piik."I(Z»)1 <2"

Kn

(11 ~ 0).

(c) max o Ilm(z)-zml <c",.

Since {<p,,},,;;,o and {K,,},,;;,o satisfy the property of the subsequence
obtained in Lemma 2.4, we have for each natural number m ~ 0 that the
set L m . 0= K ou (UY,:'iJ0) <pj(K)) is a disjoint union which is in .A"(Q) and it
is contained in Kj(m, 0) + I. Define on the compact subset L m . 0 the following
function:

if zEKo;

if ZE <pjlm,OI(Ki1m. 0));

if Z E <pj(K) for 0 ~j < i(m, 0).

Clearly, hm,o(Z)EA(L",.o). Hence, by Mergelyan's approximation
theorem (see, for instance, [10, p. 119]), for each m ~ 0, there exists a
rational function q",. 0 E H(Q), with at most one pole in every connected
component of C"\L",. 0 (by the definition of .ff(Q» and no other poles,
such that max Lm.o Ihm.o(z)-qm.o(z)1 <£m/2illll,01+1. So, we have

em
max Iqlll,O(Z)-ZIIII <2'im 0)+1'

Ko •

(0 ~j < i(m, 0)).

Observe that the third maximum fails to appear when m = O.
By induction, we may define, for each m ~ 0, the set L",." = K iI ",. 11_ II + 1 U

(UY~'il:;,"-II+l <pj(Kj )) and again we have that it is a disjoint union which
is in 'x' (Q) and it is contained in K ,1 "" rr) + I' Define on the compact subset
LIII." the following function:
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if Z E K i(m,n-I)+ I;

if ZEqJi(m,nl(Kilm,,,I);

if Z E qJ)K) (i(m, n - 1) <j < i(m, n)),

Clearly, hm , ,,(z) E A(Lm , ,,) for every m? 0, Hence, by Mergelyan's
approximation theorem again, for each m ? 0, there exists a rational func
tion qm," E H( Q), with at most one pole in every connected component of
CX\Lm 1l (by the definition of ,Jt'(Q)) and no other poles, such that
max=EL~,n Ihm,,,(z)-qm,,,(z)1 <Em/2 ilm,")+J, So, we have

Em
max !qm, ,,(z) - q""" _1(Z)I < 2i(m, "l + l'

K,(m, " - I) + I

(i(m, n - I) <j < i(m, n)),

Plainly, {q m, ,,} ,,?' 0 converges uniformly on compact subsets of Q to a
function!m E H(Q) for every m ~ 0, These functions may be written, for any
n?O, as

k=n

Hence, since Dc KoC Ki(m, k I + I for all k? 0 we have

for every m ~ 0, Therefore we have (c),
To see, for each m ~ 0, that!m is universal for {qJ ilm, "I}"?' 0' it suffices to

observe that for Z E qJj(m, "1(Kil "" Hj) C Kil "" Hj + 1 we have

00

:::;; Iqm,,,(z)-P,,(qJ;(n~,,,)(z))1 + L /q"',k+I(Z)-q",k(Z)1
k=n

00' E E
< ~ m <_"_'_

L. 2i(m,kl+ J 2ilm,,,)'
k=n
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So, we have

~max Ifm(tf?'lm,II)(Z))-PII(z)1
Kifm.nl

= ma,x Ifm(z) - PII(tf?i;-II:, 1I)(z))1
CP,(m, 11)( Ki( m. n I)

Hence, for every m ~ 0

lim Ifm( tf? '1m, II)(Z)) - PII(Z) I = 0
n- y~

383

uniformly on compact subsets,
Since, for every m~O, the sequence {fll,(tf?j(m,,,»)},,,,,o is near enough to

{p,,} ,,"'0 and we can extract from the latter a subsequence converging
uniformly on compact subsets to any fE H(Q) we have that we can extract
from the former a subsequence converging uniformly on compact subsets
to any fE H(Q), Which proves the universality of fm for every m ~ 0, This
is (a),

We are ready to prove that {fm(tf?ilk,"I)}";;'O converges uniformly on
compact subsets to the null function for k #- m, Fix 11 E {O, I, 2, ",} and
denote by r the unique natural number such that i(m, r - 1) < i(k, 11) <
i(m,r), Since K"cK'lk,1I1 and tf?'lk,1I1(K'lk,1I1)cKilk,II)+JcKum,rI+I' the
following inequalities hold:

x

~max IqmJ(tf?ilk,nl(z))1 + L max Iqm,/+l(Z)-qm./(z)1
Kilkn) I=r Kj(m,/l+l

This is (b). So, (a), (b), and (c) are fulfilled.

Second step. Let E be the vector space conslstmg of all the series
L.: ~ 0 ::imfm which converge uniformly on compact subsets of Q and F the
closure of E in H(Q). Clearly, F is closed. So, we have only to prove that
it is a non-finite dimensional vector space of universal functions.
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First, we prove that U~,} m? 0 is a basic sequence on L 2( T), so they are
linearly independent on H(Q). Let {z:,}m?() be the coefficient functionals
corresponding to the basic sequence {zm}m?O' By using (c) and the fact
that Ilz,;,112 = I for all In, we have on L 2( T)

f; Q

L Ilz:,1121Izm_j;,,112~ L max Izm_};,,1 < L f: m < 1.
m=O m=O D 111=0

As {zm}m30 is a basic sequence on L 2(T), we have that {Im}m?() is a basic
sequence equivalent on L 2(T) to {zm}m?O (see [7, Theorem 9, p. 46J).
This means that the closed linear span in e( T) generated by {zm} m? 0 is
isomorphic to the closed linear span in L 2( T) generated by U;lI} m ? O. SO,
we can associate to each element of F a unique sequence {am} m? () which
is in /2. This may be made in the following way. If IE F, then there is a
sequence of series of E which converges to f By the continuity of II· 112 with
respect to the maximum norm we have that this sequence of series con
verges to I on L 2( T). Thus I has a representation as a series on e( T). Of
course, this series may not converge uniformly on compact subsets.
Moreover, by using the maximum modulus principle, it is easy to see that
the only function that we associate the null sequence is the null function.

Now we prove that for each series L:,;r,:~oamj~, converging uniformly on
compact subsets, which is not the null function, is a universal function for
{ <"p,,} II? (). Since L::; ~ 0 amj~, is not the null function there is an ak to O. Since
every non-zero scalar multiple of a universal function is again universal, we
may suppose thatak = 1. To see that L;:;~o 7.. nJm is universal for {<"Pn} n?O
we have only to check that

(I)

uniformly on compact subsets. This is readily seen by computing

(2)

By triangle inequality (2) is less than

By using (a) and (b) we have that (3) is less than

(4)
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and by the Cauchy-Schwarz inequality we obtain that (4) is less than
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which tends to 0 when 11 tends to CfJ, so we have (I).
It remains to show that for antE E except the null function,fis a univer

sal function for {cp,,},,;:,o. Let L,:=orx"J", be its representation on C(T).
We suppose again that there is an rxk = I. Let {L,;';=orx~"f~,}/;:,o be a
sequence of series of E converging on H(Q) to f It is obvious that we may
consider that rx~ = I for all lEN. Analogously as before, to see that f is a
universal function, it suffices to verify that

lim (fICP;lk."I(::))-p,,(::))=O
11_ :r

uniformly on compact subsets. For this, fix I and 11 and estimate

~ m,t,x k(CPiik.III(Z)) - ,,~o <,f",( <Pilk. "1(::)) I

+mKax I £ rx~J~'(<P;lk."I(::))-PI(Z)1
n nr =0

< m,t,x 'f( <Pilk.III(::)) - ,,~o rx:,,1;,,( <P;lk.,,)(::)) '

+ II {<,} 111;:'0112.
2"

(5)

(6)

As the sequence of series converges to f and II {rx;,,} "';:, 0112 does it to
II {rx",} "';:, 0112 when I tends to oc, we have that there is a l( n) such that (6)
is less than 1/2" + (II {el lll } fII;:' 0112 + I )/2", which tends to O. So, we have (5).
This ends the second step and the proof. I

3. THE CASE C*

If Q = C* we find some differences. We have no function that can be
universal on H(C*) (see [I] and [14]). But given a run-away sequence
{cPII} II;:' 0 in C * there are universal functions for {cp,,} II ;:, 0 on A(K) for all
K E .i";( C*). As a matter offact, we also have that the set of such functions
is a residual set. Moreover, it is possible to construct a closed non-finite
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vector space of universal functions on A(K) for all K E .~(C*). More
precisely, we have the following theorem:

THEOREM 3.1. Let Q c C be any complex region. Let {({J,,},,;,o c Aut(Q)
be a run-away sequence. Then there exists a non-jinite dimensional closed
vector sub.\pace F c H( Q) ofjil1lctions such that every.fE F\ {o} is universal
on A(K) for all K E X'j(Q).

To prove this theorem we need the following lemma:

LEMMA 3.2. For every region Q c C there exists a sequence {K,,},,;,o c
X;(Q) such that for every KE .;fj(Q) there is a positive integer no such that

KcK"".

Proof Consider the denumerable set {U,,},,;, 0 of all connected, finite
unions of chordal balls with rational centers and rational radii, which con
tain the compact set L 1 = C"\Q, Define K" = C"\UII' If K E X';(Q), then
we may construct a connected compact set L of C" with L n K = 0 and
L[ c L. Let r be a positive rational number with the chordal distance
between K and L greater than r. Cover L by chordal balls of radius r with
rational centers such that the intersection of each of these balls with L is
not empty. We may extract a finite covering by such balls. Denote by U the
union of these balls. It is obvious that K is contained in Cf \ U and that
U = U" for some positive integer n, which ends the proof. I

Proof of Theorem 3.1. The proof is rather the same as that of
Theorem 1.2 but with a few modifications. We suppose again that fi c Q.
Let {Gm}m;,O be a sequence of positive numbers such that L;~=oGm< 1. We
also consider a denumerable dense subset of H(Q), {p,,(z)},,;,o, and we
consider the sequence of compact subsets {K;,},,;, 0 given by Lemma 3.2.
Note that it is suficient to prove the theorem for A(K~) for all 11.

By using that {({J,,} ,,;,0 is run-away we choose an exhaustive sequence of
compact subsets of Q, {K,,},,;,ocf(Q), such that for a subsequence of
{({J,,} ,,;,0 that we re-enumerate by {({Jr,,,: °~ t ~ n} we have that the com
pact subsets L"=K"u(U7=0({J1,,,(K'r)) is a disjoint union which is con
tained in K" + [ and it is in ,;f'(Q) for every natural number n ~ 0, We also
assume that fi c Ko' It is clear that L" is in f(Q) for alln. We also divide
the proof into two steps.

First step. We again put i(m,n)=(n+m)(n+m+llj2+m and we
obtain, for each t ~° and m ~ 0, a subsequence {({J I, ilm, 11) : n ~ 0;
i(m,n)~t} from {({Jr,,,},,;,r' From these subsequences, by a way of double
induction, we will construct a sequence of functions fill E H(Q) (m ~ 0) in
such a way that:
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(a) For every m ~ 0 and each f ~ 0, fIJI is a universal function for
{qJ/, il"""1 : i(m, n) ~ f} on A(K~), So is for {qJ"},, ~o on A(K~) for all natural
number f ~ O. In fact we have

(n ~ 0; i(m, n) ~ f).

(b) For every m ~ 0 and for each f ~ 0, if k #- m the sequence
{f",(qJ/.i(k,,,)):i(k,n)~f} converges uniformly to zero on K~. In fact, we
have for n ~ n(f):

(n ~ 0; i(k, 11) ~ f).

We consider L",.o=Kou(U;I':o'oOI(U:=oqJ(,j(K~)))which are in f(Q)
and are contained in Ki("" 0) + I' respectively. Define on each compact subset
L""o the following function:

if zEKo;

if ZEqJ/,il",.o)(K'/) (O:(f:(i(m,O));

if Z E qJ(.j(K~) (0:( f:(j < i(m, 0)).

Clearly, 11"" o(z) E A(L",. 0)' Then, for each m, by Mergelyan's approxima
tion theorem there exists a rational function q""oEH(Q), with at most one
pole in every connected component of COC\L",. 0 and no other poles, such
that max

Lm
.

1l
111",.o(z) -q",.o(z)! < e",/2,(",·01+ I. SO, we have

e",
ma~ [q""o(z)1 <2il ""O)+1

'Pt.,(K,l

By induction, for any n, we have that

(0:( f:( i(m, 0)),

(0:( f:(j < i(m, 0)).

(

i(",.,,) (j ))
L"""=Kil",,,,_II+l U . U U qJ,,)K'/)

)=I(m.n-I)+] 1=0
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is a compact subset which is contained in K llm, 11) + 1 and belongs to ,K"(Q),

Define, for each m ~ 0, on L""" the following function:

{

q""" I(Z),

J ("')= PII(CP'-,i:"',"/Z)),
l n1 ,11 .... 0,

ZEKllm,,,_ 11+';

Z E cP" ilm, II,(K',) (0 ~ t ~ i(m, n));

ZECPf,j(K~) (i(m,n-I)<j<i(m,O);

°~ t ~j).

Clearly, for each m ~ 0, we obtain that h",.,,(z) E A(Lm , II)' Then, for each m,
by Mergelyan's approximation theorem there exists a rational function
qm.1I E H(Q), with at most one pole in every connected component of
Cfc\L""" and no other poles, such that maxLm,n Ih",."(z)-q",,,,(z)! <c"'/
211 ",,/11+ I, SO, we have

max Iq"" ,,(z) - qm,,,
KiUn,n - 11+ I

I c'"
,(z) < 2i1m,;;Y+I'

em
max. Iq"',/I(z)1 < 21("',"1+ , (i(m, n -I) <j < i(m, n); °~ t ~j),

CPt, ,(/( II

It is clear, for each m ~ 0, that {q "'. lIt z)} ,,;, () converges uniformly on
compact subsets of Q to a function '/;" E H( Q). These functions may be
written, for any n ~ 0, as

f",( Z ) = q lII. /I( z) + I (q m. k + 1(z) - qm. k( Z ) ),

k=fl

Hence, analogously as in Theorem 1.2 we may obtain (c).
To see that,!,,, is universal on A(K;) for {CPf.llm."I:i(m,n)~t} for all

t:? 0 we compute, for z E cP f, IllII. ,,)( Kif) C KIllII, II) +, the following:

I./;,,(z) - p,,( cP f, i:"', /I /z))1

~ [Cfm, ,.(z) - P,.( cP I~i:m, 1I)(z))1 + L [q"" k + I(Z) - Cf",. k(Z)[
k =J1

L:
'f~' em Cm em

< <---<-21111I , k 1+ , 2,lm, "I 2"
k=n
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So we have, for all t ~ 0,

Hence, for all t ~ 0

lim (fm( qJ 1, 11m, n,(':)) - Pn(Z)) = 0
n- ,X,,
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uniformly on K~. Let n(m, t) be the first natural number for which
i(m, n) ~ t. Since by Mergelyan's approximation theorem {P/I} n;:dl is dense
in A(K~) we have that {Pn}fI;:,nlm.1i is dense in A(K~) for all natural
number t ~ O. So we have proved the universality of f,,, on A( K~) for all
t ~ O. This is (a).

It remains to prove that, for fixed m ~ 0, t ~ 0 and k ~ 0 with k of. m, the
sequence {j~,( qJr. ilk. n)) : 11 ~ 0; i(k, 11) ~ t} converges uniformly on compact
subsets to zero on K~. Note that, for 11 ~ 11(t), K~ C KilO./I) C Kllk./I) and
qJr. ilk. nl(Ki(k, n)) C Kj(k./Il + I' If r is the unique natural number with
i(m, r - I) + 1 ~ i(k, 11) < i(m, r), we estimate

"f:-, C em em em
~" m <_._< __ < ..
"L. 2i1m./)+1 2,(m.11 2i1k.fI) 2/1'

I=r

So (b) and the first step are completed.

Second step. All this step is analogous to that of Theorem 1.2. So, we
define E and Fas before. To see that L;:;'~oOCI1JIII is universal for {qJ/I}/I;:'o,
where OCk = I, we have only to check that

lim ( t tX lll f,,,(qJl.iik.I1I(':))-P)':))=O
!l-'X ,n=O

(7)

uniformly K~ for all t ~ O. Again, we can see it by computing for 11 large
enough
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which handled as before is less than II {a",} '" ;,0112/Y This tends to 0 when
n tends to r:I) so we have (7).

Let {L:;:~o a~,f,,,} 1;,0 be a sequence of series of E converging on H(Q)
to f This implies the sequence of series conveges uniformly on K~ for all
t ~ O. We also consider that a~ = I for all lEN. Analogously as before, to
see that I is a universal function, it suffices to verify that

lim U(CP,.ilk.,,)(Z))-p,,(Z)) =0
J1~ Cf,

(8)

uniformly on K'I for all t ~ O. For this, fix I and n large enough and estimate

max I/( CPl. ilk,"I(z)) - p,,(z)1
K',

~ mK~x I/(CP'. ilk."I(Z)) - f a~J",(CPr. ilk. "I(Z)) I
t ,u=o

+ m:;x Irt~O a~J",(CPl. ilk,"I(Z)) - P,,(Z)'

< max j/(CPI. ilk. rt)(Z)) - I a;,J~,(CPI. ilk.")(Z)) I
K'

t n,=O

+ II {a~,} "';, 0 112.
2"

(9)

As the sequence of series converges to I and II {a~,} m;' 0112 does it to
II {am} m;' 0 112 when I tends to 00, we have that there is a l( n) such that (9)

.is less than 1/2"+ (II {a",}",;,oI12 + 1)/2", which tends to O. So, we have (8).
This ends the second step and the proof. I
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